Share Email Print
cover

Proceedings Paper

IVIM-based MRI method to study the microcirculation in the heart: preliminary results in dogs
Author(s): Virginie Callot; Eric Bennett; Han Wen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In living organs, microcirculation in the capillaries and high order branches can be seen as a macroscopically random process. The Intra Voxel Incoherent Motion (IVIM) method uses a diffusion-weighted magnetic resonance imaging sequence to register this pseudo-random motion. It is able to observe perfusion in addition to the brownian diffusion by its relatively large distance of movement. The dependence of the MR signal (S) on the diffusion weighting b can be approximated as a bi-exponential relation: (S/S0)=(1-f).exp(-bD)+f.exp[-b(D+D*)], where S0 is the signal intensity for b=0, f the vascular volume fraction, D the molecular diffusion coefficient and D* a flow index. This effect, largely investigated in the brain, has never been applied in the heart, where the diffusion-weighted sequence is highly sensitive to bulk motion. We have studied microcirculation in the canine heart in vivo, with a well-controlled cardiac and respiratory gating protocol that overcomes the bulk motion effects. We demonstrated that the IVIM effect could be applied in the myocardium. The IVIM parameters were found equal to D=1.26*10-3 mm2/s, f=11.98%, D*=12.87*10-3 mm2/s. Moreover, the microcirculation is directionally anisotropic. The preferred direction of capillaries/small vessels is aligned with the myofibers in mid-myocardium in the left ventricle.

Paper Details

Date Published: 2 May 2003
PDF: 8 pages
Proc. SPIE 5031, Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, (2 May 2003); doi: 10.1117/12.480284
Show Author Affiliations
Virginie Callot, National Institutes of Health (United States)
Eric Bennett, National Institutes of Health (United States)
Han Wen, National Institutes of Health (United States)


Published in SPIE Proceedings Vol. 5031:
Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications
Anne V. Clough; Amir A. Amini, Editor(s)

© SPIE. Terms of Use
Back to Top