Share Email Print
cover

Proceedings Paper

Detection and 3D representation of pulmonary air bubbles in HRCT volumes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Bubble emphysema is a disease characterized by the presence of air bubbles within the lungs. With the purpose of identifying pulmonary air bubbles, two alternative methods were developed, using High Resolution Computer Tomography (HRCT) exams. The search volume is confined to the pulmonary volume through a previously developed pulmonary contour detection algorithm. The first detection method follows a slice by slice approach and uses selection criteria based on the Hounsfield levels, dimensions, shape and localization of the bubbles. Candidate regions that do not exhibit axial coherence along at least two sections are excluded. Intermediate sections are interpolated for a more realistic representation of lungs and bubbles. The second detection method, after the pulmonary volume delimitation, follows a fully 3D approach. A global threshold is applied to the entire lung volume returning candidate regions. 3D morphologic operators are used to remove spurious structures and to circumscribe the bubbles. Bubble representation is accomplished by two alternative methods. The first generates bubble surfaces based on the voxel volumes previously detected; the second method assumes that bubbles are approximately spherical. In order to obtain better 3D representations, fits super-quadrics to bubble volume. The fitting process is based on non-linear least squares optimization method, where a super-quadric is adapted to a regular grid of points defined on each bubble. All methods were applied to real and semi-synthetical data where artificial and randomly deformed bubbles were embedded in the interior of healthy lungs. Quantitative results regarding bubble geometric features are either similar to a priori known values used in simulation tests, or indicate clinically acceptable dimensions and locations when dealing with real data.

Paper Details

Date Published: 2 May 2003
PDF: 10 pages
Proc. SPIE 5031, Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, (2 May 2003); doi: 10.1117/12.480283
Show Author Affiliations
Jose Silvestre Silva, Univ. de Aveiro (Portugal)
Univ. de Coimbra (Portugal)
Augusto Ferreira Silva, Univ. de Aveiro (Portugal)
Beatriz Sousa Santos, Univ. de Aveiro (Portugal)
Joaquim Madeira, Univ. de Coimbra (Portugal)


Published in SPIE Proceedings Vol. 5031:
Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications
Anne V. Clough; Amir A. Amini, Editor(s)

© SPIE. Terms of Use
Back to Top