Share Email Print

Proceedings Paper

Scatter segmentation in dynamic SPECT images using principal component analysis
Author(s): Klaus D. Toennies; Anna Celler; Stephan Blinder; Torsten Möller; Ronald Harrop
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Dynamic single photon emission computed tomography (dSPECT) provides time-varying spatial information about changes of tracer distribution in the body from data acquired using a standard (single slow rotation) protocol. Variations of tracer distribution observed in the images might be due to physiological processes in the body, but may also stem from reconstruction artefacts. These two possibilities are not easily separated because of the highly underdetermined nature of the dynamic reconstruction problem. Since it is expected that temporal changes in tracer distribution may carry important diagnostic information, the analysis of dynamic SPECT images should consider and use this additional information. In this paper we present a segmentation scheme for aggregating voxels with similar time activity curves (TACs). Voxel aggregates are created through region merging based on a similarity criterion on a reduced set of features, which is derived after transformation into eigenspace. Region merging was carried out on dSPECT images from simulated and patient myocardial perfusion studies using various stopping criteria and ranges of accumulated variances in eigenspace. Results indicate that segmentation clearly separates heart and liver tissues from the background. The segmentation quality did not change significantly if more than 99% of the variance was incorporated into the feature vector. The heart behaviour followed an expected exponential decay curve while some variation of time behaviour in liver was observed. Scatter artefacts from photons originating from liver could be identified in long as well as in short studies.

Paper Details

Date Published: 15 May 2003
PDF: 10 pages
Proc. SPIE 5032, Medical Imaging 2003: Image Processing, (15 May 2003); doi: 10.1117/12.480172
Show Author Affiliations
Klaus D. Toennies, Otto-von-Guericke-Univ. Magdeburg (Germany)
Anna Celler, Vancouver General Hospital (Canada)
Stephan Blinder, Vancouver General Hospital (Canada)
Torsten Möller, Simon Fraser Univ. (Canada)
Ronald Harrop, Simon Fraser Univ. (Canada)

Published in SPIE Proceedings Vol. 5032:
Medical Imaging 2003: Image Processing
Milan Sonka; J. Michael Fitzpatrick, Editor(s)

© SPIE. Terms of Use
Back to Top