Share Email Print
cover

Proceedings Paper

Search for optimal tube voltage for image plate radiography
Author(s): Anders Tingberg; David Sjostrom
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Purpose: To search for the tube voltage which results in the highest clinical image quality per effective dose unit for chest and pelvis radiography respectively, using image plates. Methods: Two anthropomorphic phantoms were imaged with several different tube voltages. For the chest phantom, the tube voltage was varied between 70 and 150 kV, and for the pelvis phantom between 50 and 102 kV. The mAs settings were chosen so that the effective dose to the phantom was the same, regardless of the tube voltage, for the two examinations re-spectively. The clinical image quality of the resulting images was evaluated by a panel of experienced radiologists with vis-ual grading analysis of defined anatomical structures taken from the European Image Criteria. Images produced with the standard tube voltage settings (125 kV for chest and 70 kV for pelvis) were used as reference. These two kV settings were previously used for screen film radiography. Results: For both the chest and the pelvis examinations the image quality at a constant level of effective dose increased when the tube voltage was reduced. Concl usions: The image quality of image plate radiography can be increased by lowering the tube voltage compared to what was used for screen film radiography.

Paper Details

Date Published: 22 May 2003
PDF: 10 pages
Proc. SPIE 5034, Medical Imaging 2003: Image Perception, Observer Performance, and Technology Assessment, (22 May 2003); doi: 10.1117/12.479982
Show Author Affiliations
Anders Tingberg, Malmoe Univ. Hospital (Sweden)
David Sjostrom, Malmoe Univ. Hospital (Sweden)


Published in SPIE Proceedings Vol. 5034:
Medical Imaging 2003: Image Perception, Observer Performance, and Technology Assessment
Dev P. Chakraborty; Elizabeth A. Krupinski, Editor(s)

© SPIE. Terms of Use
Back to Top