Share Email Print

Proceedings Paper

Tissue-mimicking materials assessment through ultrasound velocity measurement
Author(s): Jean-Jacques Ammann; Belfor Antonio Donoso Galaz; Fernando Hentzschel Martinez
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ultrasound characterization of biological tissues is facing the challenge of accurate sound velocity determination in soft materials of poorly controlled shape. In this work, an original method based on a through-transmission configuration is proposed to accurately determine the sound velocity cs in non-parallel bio-mimetic specimens. To account for the possible lack of parallelism of the specimen, a set of 8 geometrical parameters is introduced. In a three-step process, the transducer spacing and mis-orientation are deduced from a pair of reference echoes with no specimen in the burst path. Then, main and intermediate echoes in presence of the specimen are processed to yield the characteristic distances of the through-transmission configuration. Finally, the orientations of the specimen faces are determined through a minimization algorithm. Once the system geometry is fully determined, the specimen sound velocity is obtained. A scan of the specimen along the acoustic path (Z-scan) provides the necessary information to completely determine the equation set. The proposed method has been applied to determine the sound velocity in oil-in-gel emulsions as well as in their pure constituents. It is expected that the above method could provide accurate sound velocity data for a better understanding of complex material acoustic response to achieve a more efficient biological tissues characterization.

Paper Details

Date Published: 23 May 2003
PDF: 12 pages
Proc. SPIE 5035, Medical Imaging 2003: Ultrasonic Imaging and Signal Processing, (23 May 2003); doi: 10.1117/12.479918
Show Author Affiliations
Jean-Jacques Ammann, Univ. de Santiago de Chile (Chile)
CIMAT (Chile)
Belfor Antonio Donoso Galaz, Univ. de Santiago de Chile (Chile)
Fernando Hentzschel Martinez, Univ. de Santiago de Chile (Chile)

Published in SPIE Proceedings Vol. 5035:
Medical Imaging 2003: Ultrasonic Imaging and Signal Processing
William F. Walker; Michael F. Insana, Editor(s)

© SPIE. Terms of Use
Back to Top