Share Email Print
cover

Proceedings Paper

Hybrid integrated metro ring node subsystem on a chip
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We report on a hybrid integrated metro ring node subsystem on a chip that consists of an array of four independent reconfigurable optical add-drop circuits, each with power monitoring and automatic load balancing, and supporting shared and dedicated protection protocols in two-fiber metro ring optical networks. The four-channel metro ring node chip has polymeric optical waveguiding circuitry, thermally actuated with heaters consisting of resistive strips of metal. Photodiode arrays are flip-chip mounted on top of 45° mirrors cut in the waveguides of optical power taps. The mirrors are fabricated by Excimer laser ablation of the polymer followed by smoothing and metalization. The non-integrated implementation of a metro ring node uses 48 discrete elements, namely 8 1×2 switches, 8 2×2 switches, 8 VOAs, 12 taps, and 12 photodiodes. The proposed integrated solution is an exemplary embodiment of the benefits of optoelectronic integration as it provides, when compared to the discrete solution, significant cost reduction, space savings, lower electrical power consumption, higher reliability (fewer devices, runs cooler), and fewer board-level fiber interconnects.

Paper Details

Date Published: 9 July 2003
PDF: 8 pages
Proc. SPIE 4998, Photonic Integrated Systems, (9 July 2003); doi: 10.1117/12.479791
Show Author Affiliations
Reinald Gerhardt, DuPont Photonics Technologies (United States)
Junichiro Fujita, DuPont Photonics Technologies (United States)
Antonije M. Radojevic, DuPont Photonics Technologies (United States)
Oleksandr Zhuromskyy, DuPont Photonics Technologies (United States)
Louay A. Eldada, DuPont Photonics Technologies (United States)


Published in SPIE Proceedings Vol. 4998:
Photonic Integrated Systems
Andrew R. Pirich; Paul L. Repak; Ray T. Chen; Joseph C. Chon; Louay A. Eldada; Andrew R. Pirich; Paul L. Repak; Ray T. Chen; Joseph C. Chon; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top