Share Email Print

Proceedings Paper

Direct probing of local-density-of-states in semiconductor nanostructures
Author(s): Kiyoshi Kanisawa; Yasuhiro Tokura; Hiroshi Yamaguchi; Yoshiro Hirayama
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The electronic features of semiconductor nanostructures, such as zero-dimensional states, are usually inferred from macroscopic optical and transport experiments. Although, direct probing of electrical features in semiconductor nanostructures looks very attractive, it is very difficult for a conventional semiconductor structure. However, direct probing becomes possible through a combination of low-temperature scanning tunneling microscopy and InAs(111)A surface in an ultra-high vacuum, where conductive electrons automatically accumulate near the clean surface. The clear observation of a Friedel oscillation pattern around a dislocation demonstrates successful mapping of the local-density-of-states (LDOS) of the conductive electrons. Inverted pyramidal defects are naturally formed during molecular beam epitaxial growth of InAs thin films on GaAs(111)A substrates and they operate as well-defined quantum dots. The measured LDOS pattern inside the quantum dots clearly changes as a function of energy, i.e. a sample bias, reflecting the LDOS pattern of each zero-dimensional state. A resonant concentration of the LDOS to the zero-dimensional energy levels is also demonstrated in these experiments. The LDOS measurements of a series of inverted pyramidal quantum dots with different side lengths and their comparison with theoretical calculations suggest a unique feature of the quantum dot system examined in this study.

Paper Details

Date Published: 1 July 2003
PDF: 8 pages
Proc. SPIE 4999, Quantum Sensing: Evolution and Revolution from Past to Future, (1 July 2003); doi: 10.1117/12.479607
Show Author Affiliations
Kiyoshi Kanisawa, NTT Corp. (Japan)
Yasuhiro Tokura, NTT Corp. (Japan)
Hiroshi Yamaguchi, NTT Corp. (Japan)
Yoshiro Hirayama, NTT Corp. (Japan)

Published in SPIE Proceedings Vol. 4999:
Quantum Sensing: Evolution and Revolution from Past to Future
Manijeh Razeghi; Gail J. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top