Share Email Print

Proceedings Paper

Electro-optic polymer integrated optic devices and future applications
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recent developments in electro-optic polymer materials and devices have led to new opportunities for integrated optic devices in numerous applications. The results of numerous tests have indicated that polymer materials have many properties that are suitable for use in high-speed communications systems, various sensor systems, and space applications. These result coupled with recent advances in device and material technology will allow very large bandwidth modulators and switches with low drive voltages, improved loss, long-term stabilty, and integration with other microelectronic deices such as MEMS. Low drive voltage devices are very important for space applications where power consumption scales as the square of the modulator half-wave voltage. In addition, we have demonstrated novel dual polymer modulators for mixing RF signals to produce sum and difference frequency modulation on an optical beam. This novel approach allows the suppression of the modulation at the two input RF signals and only the mixing signals remain superimposed on the optical beam. The dual modulator can be used for various encoding and frequency conversion schemes that are frequently used for both terrestrial and space communcations. Another application of polymer integrated optics is in the field of optical sensing for high frequency electric field.

Paper Details

Date Published: 14 July 2003
PDF: 10 pages
Proc. SPIE 4991, Organic Photonic Materials and Devices V, (14 July 2003); doi: 10.1117/12.479451
Show Author Affiliations
James H. Bechtel, IPITEK, Inc. (United States)
James H. Menders, IPITEK, Inc. (United States)
De Yu Zang, IPITEK, Inc. (United States)

Published in SPIE Proceedings Vol. 4991:
Organic Photonic Materials and Devices V
James G. Grote; Toshikuni Kaino, Editor(s)

© SPIE. Terms of Use
Back to Top