Share Email Print
cover

Proceedings Paper

Modeling electrical characteristics of laser tuned silicon microdevices
Author(s): Michel Meunier; Mathieu Ducharme; Jean-Sebastien Bernier
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Highly accurate resistances can be made by iteratively laser inducing local diffusion of dopants from the drain and source of a gateless field effect transistor into its channel, thereby forming an electrical link between two adjacent p-n junction diodes. These laser tuned microdevices have been electrically characterized and their current-voltage (I-V) behaviors are linear at low voltages and sublinear at higher voltages where carrier mobility is affected by the presence of high fields. Considering that the microdevice is a one dimensional trap less n+ υ n+ structure, we have developed a theoretical current-voltage equation that satisfies these experimental results.

Paper Details

Date Published: 17 October 2003
PDF: 5 pages
Proc. SPIE 4977, Photon Processing in Microelectronics and Photonics II, (17 October 2003); doi: 10.1117/12.479412
Show Author Affiliations
Michel Meunier, Ecole Polytechnique de Montreal (Canada)
Mathieu Ducharme, Ecole Polytechnique de Montreal (Canada)
Jean-Sebastien Bernier, Ecole Polytechnique de Montreal (Canada)


Published in SPIE Proceedings Vol. 4977:
Photon Processing in Microelectronics and Photonics II
Alberto Piqué; Koji Sugioka; Peter R. Herman; Jim Fieret; David B. Geohegan; Frank Träger; Kouichi Murakami; Friedrich G. Bachmann; Jan J. Dubowski; Willem Hoving; Kunihiko Washio, Editor(s)

© SPIE. Terms of Use
Back to Top