Share Email Print

Proceedings Paper

Linear and nonlinear acoustic velocity profiles over buried land mines
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Acousto-to-seismic coupling has proven to be an extremely accurate technology for locating buried landmines. Most of the research to date has focused on linear acoustic techniques in which sound couples into the ground, interacts with the buried mine, and causes increased vibration of the ground above the mine. However, Donskoy has suggested that nonlinear acoustic techniques may be applicable to acoustic mine detection. This technique has recently been used with success in field tests at the University of Mississippi and US Army mine lanes. In the nonlinear acoustic technique, airborne sound is produced at two primary frequencies which couple in to the ground and a superimposed compressional wave interacts with the mine and the soil. Because the mine is compliant, contact between the soil and the mine is maintained during the compression phase of the wave, but they are separate during the tensile phase. This creates a bimodular oscillator that is inherently non-linear. This effect has been demonstrated on inert landmines at the University of Mississippi and at US Army test lanes. Results of these tests indicate that nonlinear measurements over buried landmines have more sensitivity than linear measurements. Non-compliant objects such as concrete disks do not exhibit nonlinear phenomena but can be located using linear techniques.

Paper Details

Date Published: 13 August 2002
PDF: 6 pages
Proc. SPIE 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII, (13 August 2002); doi: 10.1117/12.479141
Show Author Affiliations
James M. Sabatier, U.S. Army Night Vision and Electronic Sensors Directorate (United States)
Murray S. Korman, U.S. Naval Academy (United States)
Ning Xiang, Univ. of Mississippi (United States)

Published in SPIE Proceedings Vol. 4742:
Detection and Remediation Technologies for Mines and Minelike Targets VII
J. Thomas Broach; Russell S Harmon; Gerald J. Dobeck, Editor(s)

© SPIE. Terms of Use
Back to Top