Share Email Print

Proceedings Paper

Classification performance of carbon black-polymer composite vapor detector arrays as a function of array size and detector composition
Author(s): Michael C. Burl; Brian C. Sisk; Thomas P. Vaid; Nathan Saul Lewis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The vapor classification performance of arrays of conducting polymer composite vapor detectors has been evaluated as a function of the number and type of detectors in an array. Quantitative performance comparisons were facilitated by challenging a collection of detector arrays with vapor discrimination tasks that were sufficiently difficult that at least some of the arrays did not exhibit perfect classification ability for all of the tasks of interest. For nearly all of the discrimination tasks investigated in this work, classification performance either increased or did not significantly decrease as the number of chemically different detectors in the array increased. Any given subset of the full array of detectors, selected because it yielded the best classification performance at a given array size for one particular task, was invariably outperformed by a different subset of detectors, and by the entire array, when used in at least one other vapor discrimination task. Arrays of detectors were nevertheless identified that yielded robust discrimination performance between compositionally close mixtures of 1-propanol and 2-propanol, n-hexane and n-heptane, and meta-xylene and para-xylene, attesting to the excellent analyte classification performance that can be obtained through the use of such semi-selective vapor detector arrays.

Paper Details

Date Published: 13 August 2002
PDF: 12 pages
Proc. SPIE 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII, (13 August 2002); doi: 10.1117/12.479125
Show Author Affiliations
Michael C. Burl, Jet Propulsion Lab. (United States)
Brian C. Sisk, California Institute of Technology (United States)
Thomas P. Vaid, California Institute of Technology (United States)
Nathan Saul Lewis, California Institute of Technology (United States)

Published in SPIE Proceedings Vol. 4742:
Detection and Remediation Technologies for Mines and Minelike Targets VII
J. Thomas Broach; Russell S Harmon; Gerald J. Dobeck, Editor(s)

© SPIE. Terms of Use
Back to Top