Share Email Print
cover

Proceedings Paper

Archimedean-spiral and log-spiral antenna comparison
Author(s): Peter R. Lacko; Charmaine Cisneros Franck; Matthew Johnson; James M. Ralston; Marshall R. Bradley; Robert McCummins
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For several years, ground-penetrating radar (GPR) has been used to search for buried landmines. Most of the evaluation effort on complete detection systems has focused on end-to-end performance metrics (e.g., Pd and Pfa). Here, we focus on the specific performance of one critical component of GPR systems-the antennas. This is the first in a series of papers that will compare the following parameters of many different antennas: (1) the most useful bandwidths, (2) the role of polarization and polarization diversity, (3) spurious coupling effects, and (4) phase-correction considerations. This paper compares four types of Planning Systems, Inc., antennas that were developed for current and past GPR systems. These are a 5.5-in. log-spiral antenna without balun or spiral-arm terminations; 5.75-in. log-spiral antenna with tapered balun and arm termination; 5.5-in. Archimedean-spiral antenna with tapered balun, but without arm terminations; and 5.75-in. Archimedean-spiral antenna with tapered balun and arm terminations. Three main tests were performed to compare the antennas: (1) S11, to show overall matching bandwidth and to reveal discontinuities in the balun-antenna-termination structure; (2) S21, to measure undesired direct-path coupling relative to intended target scattering; and (3) S21, to show direct coupling vs. antenna spacing.

Paper Details

Date Published: 13 August 2002
PDF: 7 pages
Proc. SPIE 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII, (13 August 2002); doi: 10.1117/12.479093
Show Author Affiliations
Peter R. Lacko, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Charmaine Cisneros Franck, Science Applications International Corp. (United States)
Matthew Johnson, Institute for Defense Analyses (United States)
James M. Ralston, Institute for Defense Analyses (United States)
Marshall R. Bradley, Planning Systems Inc. (United States)
Robert McCummins, Planning Systems Inc. (United States)


Published in SPIE Proceedings Vol. 4742:
Detection and Remediation Technologies for Mines and Minelike Targets VII
J. Thomas Broach; Russell S Harmon; Gerald J. Dobeck, Editor(s)

© SPIE. Terms of Use
Back to Top