Share Email Print

Proceedings Paper

Humanitarian multisensor hand-held mine detector: exploitation of ancillary data in GPR processing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

QinetiQ is developing a hand held Multi-sensor mine detector prototype for humanitarian applications. The sensor consists of a GPR, a metal detector and ancillary sensors. This paper describes how data produced by ancillary sensors can be exploited in order to assist the GPR processing. The GPR consists of a 3x3 array of antennas, and focused images of the volume beneath the sensor are formed by post reception synthetic aperture processing. The mine detector is intended to detect sub surface targets, and an accurate knowledge of the ground surface position relative to the sensor is required. Also the high frequency dielectric constant of the ground medium is required in order to produce focused images. This paper analyses the requirements for good post reception synthetic aperture processing. The accuracy of the ground surface position data and the dielectric constant estimation are determined. A model for soil dielectric constant is used to derive the sensitivity of post reception synthetic aperture processing to unknown soil texture. It is show that for the GPR configuration considered, a wide range of texture variations is tolerable provided the soil moisture can be accurately estimated. Variations in soil composition are also tolerable.

Paper Details

Date Published: 13 August 2002
PDF: 10 pages
Proc. SPIE 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII, (13 August 2002); doi: 10.1117/12.479090
Show Author Affiliations
Graeme Neil Crisp, QinetiQ (United Kingdom)
Andrew Hill, QinetiQ (United Kingdom)

Published in SPIE Proceedings Vol. 4742:
Detection and Remediation Technologies for Mines and Minelike Targets VII
J. Thomas Broach; Russell S Harmon; Gerald J. Dobeck, Editor(s)

© SPIE. Terms of Use
Back to Top