Share Email Print
cover

Proceedings Paper

Analysis of MTI data over coastal Massachusetts
Author(s): Hsiao-hua K. Burke; J. William Snow; Michael K. Griffin; Carolyn A Upham
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

VNIR-SWIR data from DOE MTI satellite are used to demonstrate the retrieval of aerosol and cloud properties. MTI data offer high spatial resolution and high SNR data. Furthermore, collection from both nadir and off-nadir views offer a unique opportunity to assess atmospheric path length effects both through clear and cloud conditions. Data sets were acquired to investigate cloud and aerosol properties: 29 July and 22 August 2000 over the coastal region of Massachusetts near Plymouth. Two topics are investigated: (1) retrieval of aerosol optical properties, and (2) characterization of water and ice clouds at nadir and off-nadir views. Data collection on 22 August 2000 represents a relatively clear atmospheric condition in the vicinity of Pilgrim Power Plant, Plymouth. Data over both vegetated land and ocean are analyzed. Two algorithms for aerosol retrieval over land are compared: the conventional dense-dark vegetation (DDV) algorithm and a generalized VIS-SWIR reflectance correlation and scatter-plot analysis (VSP) algorithm. Optical depths at multiple wavelengths and aerosol type were derived and compared with ground based AERONET data. It is demonstrated that the VSP algorithm captures the spectral variability in aerosol extinction, and thus performs better. Data collection from 29 July 2000 over the same area was investigated for cloud characteristics at different viewing geometries. Top-of-the-Atmosphere (TOA) reflectance statistics is computed for a common cloudy region. It is observed that in cloud free regions, nadir TOA reflectance is lower than that from off-nadir observations. This is due to the increased atmospheric scattering effect from the longer paths. On the other hand, TOA reflectance over cloud area depends on the scattering phase function and the look angle. Here we use simple expressions to illustrate that the effects for water and ice particles can be quite different resulting in very different viewing geometry effects between cumulus and cirrus clouds.

Paper Details

Date Published: 2 August 2002
PDF: 11 pages
Proc. SPIE 4725, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, (2 August 2002); doi: 10.1117/12.478773
Show Author Affiliations
Hsiao-hua K. Burke, MIT Lincoln Lab. (United States)
J. William Snow, MIT Lincoln Lab. (United States)
Michael K. Griffin, MIT Lincoln Lab. (United States)
Carolyn A Upham, MIT Lincoln Lab. (United States)


Published in SPIE Proceedings Vol. 4725:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top