Share Email Print

Proceedings Paper

Cloud remote sensing with sideways looks: theory and first results using Multispectral Thermal Imager data
Author(s): Anthony B. Davis
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In operational remote sensing, the implicit model for cloud geometry is a homogeneous plane-parallel slab of infinite horizontal extent. Each pixel is indeed processed as if it exchanged no radiant energy whatsoever with its neighbors. The shortcomings of this conceptual model have been well documented in the specialized literature but rarely mitigated. The worst-case scenario is probably high-resolution imagery where dense isolated clouds are visible, often both bright (reflective) and dark (transmissive) sides being apparent from the same satellite viewing angle: the low transmitted radiance could conceivably be interpreted in plane-parallel theory as no cloud at all. An alternative to the plane-parallel cloud model is introduced here that has the same appeal of being analytically tractable, at least in the diffusion limit: the spherical cloud. This new geometrical paradigm is applied to radiances from cumulus clouds captured by DOE's Multispectral Thermal Imager (MTI). Estimates of isolated cloud opacities are a necessary first step in correcting radiances from surface targets that are visible in the midst of a broken-cloud field. This type of advanced atmospheric correction is badly needed in remote sensing applications such as nonproliferation detection were waiting for a cloud-free look in the indefinite future is not a viable option.

Paper Details

Date Published: 2 August 2002
PDF: 9 pages
Proc. SPIE 4725, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, (2 August 2002); doi: 10.1117/12.478772
Show Author Affiliations
Anthony B. Davis, Los Alamos National Lab. (United States)

Published in SPIE Proceedings Vol. 4725:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top