Share Email Print

Proceedings Paper

Extraction of hyperspectral scene statistics and scene realization
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A method for the extraction of spectral and spatial scene statistics from hyperspectral data is discussed. The method is designed to work on atmospherically compensated data in the visible/SWIR or the Thermal IR (TIR). The statistics are determined from the fractional abundance images obtained from spectral un-mixing of the scene. The statistical quantities that are extracted include endmember abundance means, variances, and correlation lengths. These quantities are used to construct a high spatial resolution reflectance or emissivity/temperature surface using a fast autoregressive texture generation tool. The spectral complexity of the synthetic surfaces have been evaluated by inserting objects for detection and calculating ROC curves. Preliminary results indicate that synthetic scenes with realistic levels of spectral clutter can be generated using spectral and spatial statistics determined from endmember fractional abundance maps. This work is motivated by the need for realistic hyperspectral scene generation capabilities to test future hyperspectral sensor concepts.

Paper Details

Date Published: 2 August 2002
PDF: 11 pages
Proc. SPIE 4725, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, (2 August 2002); doi: 10.1117/12.478750
Show Author Affiliations
Robert L. Sundberg, Spectral Sciences, Inc. (United States)
John H. Gruninger, Spectral Sciences, Inc. (United States)
Raymond Haren, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 4725:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top