Share Email Print
cover

Proceedings Paper

Utilization of Pb-free solders in MEMS packaging
Author(s): Guna S. Selvaduray
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

Paper Details

Date Published: 16 January 2003
PDF: 7 pages
Proc. SPIE 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II, (16 January 2003); doi: 10.1117/12.478555
Show Author Affiliations
Guna S. Selvaduray, San Jose State Univ. (United States)


Published in SPIE Proceedings Vol. 4980:
Reliability, Testing, and Characterization of MEMS/MOEMS II
Rajeshuni Ramesham; Danelle M. Tanner, Editor(s)

© SPIE. Terms of Use
Back to Top