Share Email Print
cover

Proceedings Paper

Expectation maximization applied to GMTI convoy tracking
Author(s): Wolfgang Koch
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Collectively moving ground targets are typical of a military ground situation and have to be treated as separate aggregated entities. For a long-range ground surveillance application with airborne GMTI radar we inparticular address the task of track maintenance for ground moving convoys consisting of a small number of individual vehicles. In the proposed approach the identity of the individual vehicles within the convoy is no longer stressed. Their kinematical state vectors are rather treated as internal degrees of freedom characterizing the convoy, which is considered as a collective unit. In this context, the Expectation Maximization technique (EM), originally developed for incomplete data problems in statistical inference and first applied to tracking applications by STREIT et al. seems to be a promising approach. We suggest to embed the EM algorithm into a more traditional Bayesian tracking framework for dealing with false or unwanted sensor returns. The proposed distinction between external and internal data association conflicts (i.e. those among the convoy vehicles) should also enable the application of sequential track extraction techniques introduced by Van Keuk for aircraft formations, providing estimates of the number of the individual convoy vehicles involved. Even with sophisticated signal processing methods (STAP: Space-Time Adaptive Processing), ground moving vehicles can well be masked by the sensor specific clutter notch (Doppler blinding). This physical phenomenon results in interfering fading effects, which can well last over a longer series of sensor updates and therefore will seriously affect the track quality unless properly handled. Moreover, for ground moving convoys the phenomenon of Doppler blindness often superposes the effects induced by the finite resolution capability of the sensor. In many practical cases a separate modeling of resolution phenomena for convoy targets can therefore be omitted, provided the GMTI detection model is used. As an illustration we consider the contribution of the proposed GMTI sensor model to the problem of early recognition of a stopping convoy.

Paper Details

Date Published: 7 August 2002
PDF: 11 pages
Proc. SPIE 4728, Signal and Data Processing of Small Targets 2002, (7 August 2002); doi: 10.1117/12.478525
Show Author Affiliations
Wolfgang Koch, FGAN-Forschungsinstitut fuer Kommunikation, Informationsverarbeitung und Ergonomie (Germany)


Published in SPIE Proceedings Vol. 4728:
Signal and Data Processing of Small Targets 2002
Oliver E. Drummond, Editor(s)

© SPIE. Terms of Use
Back to Top