Share Email Print

Proceedings Paper

In vivo fluorescence imaging of cyanine derivative modified with epidermal growth factor EGF-Cy5.5 in a murine model of carcinogenesis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The specificity of a novel EGF-Cy5.5 fluorescent optical probe was assessed using CW fluorescence imaging accomplished via an ICCD camera. Imaging was performed on mice with MDA-MB-468 cancer, known to overexpress EGFr, and contrasted against an analogous cell line, MDA-MB-435, that does not express EGFr. Fluorescence images on mice bearing s.c. inoculated tumors were obtained every 6 seconds for a period of 20 minutes following i.v. injection of ICG, Cy5.5, or EGF-Cy5.5 and every 24 hrs thereafter for up to 192 hrs. In addition, mice with MDA-MB-468 tumors were injected i.v. with anti-EGFr antibody C225 24 hrs prior to injection of EGF-Cy5.5. Monitoring the time-sensitive fluorescence intensity confirms that ICG and Cy5.5 show no favorable binding to tumor, regardless of EGFr expression level. In contrast, EGF-Cy5.5 exhibits selective accumulation only in the MDA-MB-468 tumor. Moreover, tumor uptake of EGF-Cy5.5 was blocked by pre-injection of C225 antibody, demonstrating specificity of the targeted contrast agent. Data further demonstrate that ICG and Cy5.5 fluorescence is completely absent from the tumor site, regardless of EGFr expression level, 24-hrs post injection. Similarly, little EGF-Cy5.5 fluorescence was detected in the EGFr-negative tumor after 24 hrs, however, for the MDA-MB-468 tumor, EGF-Cy5.5 fluorescence did not reach undetectable levels until 192 hrs.

Paper Details

Date Published: 12 September 2003
PDF: 9 pages
Proc. SPIE 4967, Genetically Engineered and Optical Probes for Biomedical Applications, (12 September 2003); doi: 10.1117/12.478402
Show Author Affiliations
Michael Gurfinkel, Texas A&M Univ. (United States)
Shi Ke, Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
Chun Li, Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
Eva Marie Sevick-Muraca, Texas A&M Univ. (United States)

Published in SPIE Proceedings Vol. 4967:
Genetically Engineered and Optical Probes for Biomedical Applications
Darryl J. Bornhop; Ramesh Raghavachari; Samuel I. Achilefu; Alexander P. Savitsky, Editor(s)

© SPIE. Terms of Use
Back to Top