Share Email Print
cover

Proceedings Paper

Thermal stability of SU-8 fabricated microstructures as a function of photo initiator and exposure doses
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

SU-8 has been used directly as structural material for MEMS/BioMEMS components as well as optical MEMS components. Although the applications of SU-8 photoresist have widely been presented, the material properties and behavior at elevated temperature have rarely been reported. In this paper, the thermal stability of the SU-8 structures as the function of exposure doses and photo initiator concentration changes has been studied. Differential Scanning Calorimeter (DSC), Thermogravimetric Analyzer (TGA) and Dynamic mechanical analysis (DMA) are employed to study the thermal stabilities of exposed SU-8 microstructures. Mass loss as the function of exposure doses and post-baking time were studied by TGA. The results show that the relative mass loss is inversely proportional to the exposure dose as well as the post-baking time, which also directly affect the thermal stability of SU-8 components. The DSC results reveal that there is a phase change reaction occurs around the temperature of 150°C and is directly related to the photo initiator. The effects of this phase change on the tensile strength and creep behavior of SU-8 fabricated microstructures were also explored using DMA. These results will provide the MEMS researchers and engineers with the usable information in SU-8 applications. At the end, how to optimize SU-8 processing parameters to increase its thermal stability is discussed.

Paper Details

Date Published: 16 January 2003
PDF: 5 pages
Proc. SPIE 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II, (16 January 2003); doi: 10.1117/12.478197
Show Author Affiliations
Kun Lian, Louisiana State Univ. (United States)
Zhong-geng Ling, Louisiana State Univ. (United States)
Changgeng Liu, Louisiana State Univ. (United States)


Published in SPIE Proceedings Vol. 4980:
Reliability, Testing, and Characterization of MEMS/MOEMS II
Rajeshuni Ramesham; Danelle M. Tanner, Editor(s)

© SPIE. Terms of Use
Back to Top