Share Email Print

Proceedings Paper

Effects of tissue optical properties on time-resolved fluorescence measurements from brain tumors: an experimental and computational study
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.

Paper Details

Date Published: 29 July 2003
PDF: 9 pages
Proc. SPIE 4955, Optical Tomography and Spectroscopy of Tissue V, (29 July 2003); doi: 10.1117/12.478192
Show Author Affiliations
Pramod V. Butte, Univ. of Southern California (United States)
Karthik Vishwanath, Dartmouth College (United States)
Brian K. Pikul, Cedars-Sinai Medical Ctr. (United States)
Mary-Ann Mycek, Dartmouth College (United States)
Laura Marcu, Univ. of Southern California (United States)
Cedars-Sinai Medical Ctr. (United States)

Published in SPIE Proceedings Vol. 4955:
Optical Tomography and Spectroscopy of Tissue V
Britton Chance; Robert R. Alfano; Bruce J. Tromberg; Mamoru Tamura; Eva M. Sevick-Muraca, Editor(s)

© SPIE. Terms of Use
Back to Top