Share Email Print

Proceedings Paper

Optical properties by time-resolved fluorescence Monte Carlo simulation
Author(s): Praveen Kadimcherla; Mostafa Sadoqi; Sunil Kumar
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper we describe a Monte Carlo simulation for time resolved fluorescence. In the past information on steady state measurements have been reported. However we feel that a lot more information and insight could be gained by the use of time resolved fluorescence spectroscopy. We have developed a Monte Carlo simulation to study the fluorescence signal generated by fluorophores distributed in a scattering medium. The simulation uses a semi-infinite medium with a thickness of 1cm. We have used the simulation to study the effect of the change in optical properties of the medium on the TPSF (temporal point spread function) generated. We have also investigated the effect of the increased radial separation of the detector on the TPSF. We have observed a shift in the Tmax (time at which the peak intensity is reached) in accordance with diffusion theory. We wanted to validate our simulation by seeing how well we could derive the optical properties of the medium from the TPSF produced from simulation. We fitted the TPSF to an adjusted form of the diffusion theory to find scattering coefficient, μs, and we have used an analytical model of time resolved fluorescence to extract the absorption coefficient, μa. The results obtained were better than previously reported.

Paper Details

Date Published: 29 July 2003
PDF: 10 pages
Proc. SPIE 4955, Optical Tomography and Spectroscopy of Tissue V, (29 July 2003); doi: 10.1117/12.478178
Show Author Affiliations
Praveen Kadimcherla, St. John's Univ. (United States)
Mostafa Sadoqi, St. John's Univ. (United States)
Sunil Kumar, Polytechnic Univ. (United States)

Published in SPIE Proceedings Vol. 4955:
Optical Tomography and Spectroscopy of Tissue V
Britton Chance; Robert R. Alfano; Bruce J. Tromberg; Mamoru Tamura; Eva M. Sevick-Muraca, Editor(s)

© SPIE. Terms of Use
Back to Top