Share Email Print

Proceedings Paper

Detectability of contrast agents for video-rate confocal reflectance microscopy of skin and microcirculation in vivo
Author(s): Milind M. Rajadhyaksha; Salvador Gonzalez
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The lack of structure-specific contrast limits the usefulness of confocal reflectance microscopy to morphologic investigations at the cellular- and nuclear-level in human and animal skin in vivo. Morphologic and functional imaging at specific organelle- and ultrastructure-levels will require contrast agents that may be used and detected in vivo. High-resolution confocal reflectance imaging is based on the detection of singly back-scattered photons, where contrast is provided by variations in the refractive indices of microstructures. We carried out a quantitative Mie back-scatter analysis and imaging experiments to understand signal detectability of reflectance contrast agents for visualizing human skin and animal microcirculation. When imaging at video-rate with illumination of 10 milliwatts at 1064 nm, we detect 100-104 photons/pixel from the epidermis to dermis, relative to a background of 100 photons; this provides a signal-to-noise ratio of 3-40 and signal-to-background of 1-100. Organelles of size (d) 0.1-1.0 μm with refractive indices (n) of 1.34-1.45 (relative to n=1.34 for epidermis, n=1.38 for dermis) back-scatter 10-104 photons/pixel. Exogenous contrast agents such as liposomes (n=1.41, d=0.7 μm) and polystyrene microspheres (d=0.2-1.0 μm, n=1.57; 100-105 photons/pixel) are detectable and they strongly enhance the contrast of microcirculation in the dermis of Sprague-Dawley rats. Topically applied 5% acetic acid causes the intra-nuclear 30-100 nm-thin chromatin filaments to condense into 1-5 μm-thick strands, increasing back-scattered signal from 100 to 104 photons/pixels, making the nuclei appear bright and easily detectable in basal cell cancers. Such analyses provide a basis for optimizing confocal microscope design for detectability of contrast agents in vivo.

Paper Details

Date Published: 19 June 2003
PDF: 6 pages
Proc. SPIE 4962, Manipulation and Analysis of Biomolecules, Cells, and Tissues, (19 June 2003); doi: 10.1117/12.477894
Show Author Affiliations
Milind M. Rajadhyaksha, Northeastern Univ. (United States)
Salvador Gonzalez, Massachusetts General Hospital (United States)
Harvard Medical School (United States)
Alcala Univ. (Spain)

Published in SPIE Proceedings Vol. 4962:
Manipulation and Analysis of Biomolecules, Cells, and Tissues
Dan V. Nicolau; Joerg Enderlein; Robert C. Leif; Daniel L. Farkas, Editor(s)

© SPIE. Terms of Use
Back to Top