Share Email Print
cover

Proceedings Paper

Shape Engineered InAs Quantum Dots with Stabilized Electronic Properties
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have studied the influence of overgrowth procedure and a few monolayer-thick AlAs capping layers on the properties of self-assembled InAs quantum dots (QDs) using transmission electron microscopy (TEM), scanning electron microscopy, and photoluminescence (PL). PL spectroscopy was used to study and optimize optical properties of the QDs by shape engineering (QD truncation) through adjustment of the thickness of overlayers and temperature of the subsequent heating. QDs with 6 nm-thick overlayer with heating step at 560°C was found to have the highest PL intensity at room temperature and the lowest FWHM, 29 meV. Ground state energy of the truncated QDs is very stable against variations of growth parameters. TEM measurements show that the capping AlAs layer covers the QDs entirely even though the dots are truncated by the heating step. 1.22 μm edge-emitting laser with triple-layer truncated QD gain medium demonstrated room temperature minimum threshold current density, 56 A/cm2, and high saturated modal gain, 16 cm-1. Extremely high characteristic temperature, To = 304 K in the 20 - 60°C interval, and maximum lasing temperature of 219°C were measured for this laser diode.

Paper Details

Date Published: 1 July 2003
PDF: 9 pages
Proc. SPIE 4999, Quantum Sensing: Evolution and Revolution from Past to Future, (1 July 2003); doi: 10.1117/12.477795
Show Author Affiliations
Vadim E. Tokranov, Univ. at Albany (United States)
Michael Yakimov, Univ. at Albany (United States)
Alex Katsnelson, Univ. at Albany (United States)
Matthew Lamberti, Univ. at Albany (United States)
Serge Oktyabrsky, Univ. at Albany (United States)


Published in SPIE Proceedings Vol. 4999:
Quantum Sensing: Evolution and Revolution from Past to Future
Manijeh Razeghi; Gail J. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top