Share Email Print

Proceedings Paper

Physics-based shape deformations for medical image analysis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Powerful, flexible shape models of anatomical structures are required for robust, automatic analysis of medical images. In this paper we investigate a physics-based shape representation and deformation method in an effort to meet these requirements. Using a medial-based spring-mass mesh model, shape deformations are produced via the application of external forces or internal spring actuation. The range of deformations includes bulging, stretching, bending, and tapering at different locations, scales, and with varying amplitudes. Springs are actuated either by applying deformation operators or by activating statistical modes of variation obtained via a hierarchical regional principal component analysis. We demonstrate results on both synthetic data and on a spring-mass model of the corpus callosum, obtained from 2D mid-sagittal brain Magnetic Resonance (MR) Images.

Paper Details

Date Published: 28 May 2003
PDF: 9 pages
Proc. SPIE 5014, Image Processing: Algorithms and Systems II, (28 May 2003); doi: 10.1117/12.477763
Show Author Affiliations
Ghassan Hamarneh, Hospital for Sick Children (Canada)
Univ. of Toronto (Canada)
Tim McInerney, Ryerson Univ. (Canada)
Univ. of Toronto (Canada)

Published in SPIE Proceedings Vol. 5014:
Image Processing: Algorithms and Systems II
Edward R. Dougherty; Jaakko T. Astola; Karen O. Egiazarian, Editor(s)

© SPIE. Terms of Use
Back to Top