Share Email Print

Proceedings Paper

Multiresolution wavelet filtering and image reconstruction algorithm for optoacoustic tomography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new method for reconstruction of optoacoustic images is proposed. The method of image reconstruction incorporates multiresolution wavelet filtering into spherical back-projection algorithm. According to our method, each optoacoustic signal detected with an array of ultrawide-band transducers is decomposed into a set of self-similar wavelets with different resolution (characteristic frequency) and then back-projected along the spherical traces for each resolution scale separately. The advantage of this approach is that one can reconstruct objects of a preferred size or a range of sizes. The sum of all images reconstructed with different resolutions yields an image that visualizes small and large objects at once. An approximate speed of the proposed algorithm is of the same order as algorithm, based on the Fast Fourier Transform (FFT). The accuracy of the proposed method is illustrated by images, which are reconstructed from simulated optoacoustic signals as well as signals measured with the Laser Optoacoustic Imaging System (LOIS) from a loop of blood vessel embedded in a gel phantom. The method can be used for contrast-enhanced optoacoustic imaging in the depth of tissue, i.e. for medical applications such as breast cancer or prostate cancer detection.

Paper Details

Date Published: 1 July 2003
PDF: 7 pages
Proc. SPIE 4960, Biomedical Optoacoustics IV, (1 July 2003); doi: 10.1117/12.477647
Show Author Affiliations
Igor Patrickeyev, Institute of Continuous Media Mechanics (Russia)
Alexander A. Oraevsky, Fairway Medical Technologies, Inc. (United States)

Published in SPIE Proceedings Vol. 4960:
Biomedical Optoacoustics IV
Alexander A. Oraevsky, Editor(s)

© SPIE. Terms of Use
Back to Top