Share Email Print

Proceedings Paper

Robust SAR ATR by hedging against uncertainty
Author(s): John R. Hoffman; Ronald P. S. Mahler; Ravi B. Ravichandran; Melvyn Huff; Stanton Musick
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For the past two years in this conference, we have described techniques for robust identification of motionless ground targets using single-frame Synthetic Aperture Radar (SAR) data. By robust identification, we mean the problem of determining target ID despite the existence of confounding statistically uncharacterizable signature variations. Such variations can be caused by effects such as mud, dents, attachment of nonstandard equipment, nonstandard attachment of standard equipment, turret articulations, etc. When faced with such variations, optimal approaches can often behave badly-e.g., by mis-identifying a target type with high confidence. A basic element of our approach has been to hedge against unknowable uncertainties in the sensor likelihood function by specifying a random error bar (random interval) for each value of the likelihood function corresponding to any given value of the input data. Int his paper, we will summarize our recent results. This will include a description of the fuzzy maximum a posteriori (MAP) estimator. The fuzzy MAP estiamte is essentially the set of conventional MAP estimates that are plausible, given the assumed uncertainty in the problem. Despite its name, the fuzzy MAP is derived rigorously from first probabilistic principles based on random interval theory.

Paper Details

Date Published: 31 July 2002
PDF: 12 pages
Proc. SPIE 4729, Signal Processing, Sensor Fusion, and Target Recognition XI, (31 July 2002); doi: 10.1117/12.477605
Show Author Affiliations
John R. Hoffman, Lockheed Martin Tactical Systems (United States)
Ronald P. S. Mahler, Lockheed Martin Tactical Systems (United States)
Ravi B. Ravichandran, Scientific Systems Co., Inc. (United States)
Melvyn Huff, Scientific Systems Co., Inc. (United States)
Stanton Musick, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 4729:
Signal Processing, Sensor Fusion, and Target Recognition XI
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top