Share Email Print
cover

Proceedings Paper

New resolution enhancement method realizing the limit of single mask exposure
Author(s): Kenji Yamazoe; Masanobu Hasegawa; Kenji Saitoh; Akiyoshi Suzuki
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

IDEALSmile is introduced as a new exposure technique that realizes k1 equals 0.29. In this paper IDEALSmile is targeted for contact hole patterns (C/H). The results validate that it is possible to simultaneously expose not only k1 equals 0.32 half-pitch dense and isolated C/H patterns, but also different pitches using Canon FPA- 5000ES3, which is impossible by conventional methods. Since these results are obtained using a binary mask and modified illumination with single exposure, there are no concerns with regards to a decease in throughput and an increase in cost of ownership. However, one of the issues in fabricating C/H patterns is the mask error enhancement factor (MEEF). Our simulation ha shown that IDEALSmile exhibits good MEEF. Although there are questions regarding optical microlithography for critical C/H patterning, the IDEALSmile exposure method has the potential to be the solution. By attaining k1 equals 0.32, printing 100nm C/H patterns can be achieved with a single exposure using KrF lithography, such as the Canon FPA-5000ES4. Furthermore the IDEALSmile technique using ArF or F2 lithography will be effective for C/H patterns below the 100nm node. There is no doubt that optical microlithography will continue for some time.

Paper Details

Date Published: 1 August 2002
PDF: 12 pages
Proc. SPIE 4754, Photomask and Next-Generation Lithography Mask Technology IX, (1 August 2002); doi: 10.1117/12.477002
Show Author Affiliations
Kenji Yamazoe, Canon Inc. (Japan)
Masanobu Hasegawa, Canon Inc. (Japan)
Kenji Saitoh, Canon Inc. (Japan)
Akiyoshi Suzuki, Canon Inc. (Japan)


Published in SPIE Proceedings Vol. 4754:
Photomask and Next-Generation Lithography Mask Technology IX
Hiroichi Kawahira, Editor(s)

© SPIE. Terms of Use
Back to Top