Share Email Print

Proceedings Paper

Alternating phase-shifting masks: phase determination and impact of quartz defects--theoretical and experimental results
Author(s): Uwe A. Griesinger; Wolfgang Dettmann; Mario Hennig; Jan P. Heumann; Roderick Koehle; Ralf Ludwig; Martin Verbeek; Mardjan Zarrabian
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In optical lithography balancing the aerial image of an alternating phase shifting mask (alt. PSM) is a major challenge. For the exposure wavelengths (currently 248nm and 193nm) an optimum etching method is necessary to overcome imbalance effects. Defects play an important role in the imbalances of the aerial image. In this contribution defects will be discussed by using the methodology of global phase imbalance control also for local imbalances which are a result of quartz defects. The effective phase error can be determined with an AIMS-system by measuring the CD width between the images of deep- and shallow trenches at different focus settings. The AIMS results are analyzed in comparison to the simulated and lithographic print results of the alternating structures. For the analysis of local aerial image imbalances it is necessary to investigate the capability of detecting these phase defects with state of the art inspection systems. Alternating PSMs containing programmed defects were inspected with different algorithms to investigate the capture rate of special phase defects in dependence on the defect size. Besides inspection also repair of phase defects is an important task. In this contribution we show the effect of repair on the optical behavior of phase defects. Due to the limited accuracy of the repair tools the repaired area still shows a certain local phase error. This error can be caused either by residual quartz material or a substrate damage. The influence of such repair induced phase errors on the aerial image were investigated.

Paper Details

Date Published: 1 August 2002
PDF: 12 pages
Proc. SPIE 4754, Photomask and Next-Generation Lithography Mask Technology IX, (1 August 2002); doi: 10.1117/12.476982
Show Author Affiliations
Uwe A. Griesinger, Infineon Technologies AG (Germany)
Wolfgang Dettmann, Infineon Technologies AG (Germany)
Mario Hennig, Infineon Technologies AG (Germany)
Jan P. Heumann, Infineon Technologies AG (Germany)
Roderick Koehle, Infineon Technologies AG (Germany)
Ralf Ludwig, Infineon Technologies AG (Germany)
Martin Verbeek, Infineon Technologies AG (Germany)
Mardjan Zarrabian, Infineon Technologies AG (Germany)

Published in SPIE Proceedings Vol. 4754:
Photomask and Next-Generation Lithography Mask Technology IX
Hiroichi Kawahira, Editor(s)

© SPIE. Terms of Use
Back to Top