Share Email Print
cover

Proceedings Paper

Simulation method using the image filter method
Author(s): Masahiko Minemura; Kazuhiko Takahashi; Mitsuo Sakurai; Kazuya Sugawa
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We conducted an experiment to determine if the use of image filter method for simulation that calculates the distribution of light intensity on a wafer can reduce processing time in comparison to the use of the Fourier transform. The image filter table value is set by changing the value of Gaussian distribution. The image filter method was approximated with the light intensity of optical simulation that keeps accuracy within the range of the allowance. In this experiment, we examined the differences between the distributions calculated using the Fourier transform and the calculation time by varying the sizes of the image filter tables. For the experiment, we used pattern data having a line width that used in the most advanced technology. When the area of pattern data was wide, the experiment revealed that use of the image filter method reduced calculation time by approximately 50 percent or more in comparison to a simulation that used the Fourier transform. As we decreased the size of the image filter tables, the calculation time became shorter, but the differences from the distribution calculated using the Fourier transform became larger. We intend to study the possibility of simulation by expanding the area of pattern data and using the image filter method for simulation-based OPC.

Paper Details

Date Published: 1 August 2002
PDF: 8 pages
Proc. SPIE 4754, Photomask and Next-Generation Lithography Mask Technology IX, (1 August 2002); doi: 10.1117/12.476938
Show Author Affiliations
Masahiko Minemura, Fujitsu Ltd. (Japan)
Kazuhiko Takahashi, Fujitsu Ltd. (Japan)
Mitsuo Sakurai, Fujitsu Ltd. (Japan)
Kazuya Sugawa, Fujitsu Ltd. (Japan)


Published in SPIE Proceedings Vol. 4754:
Photomask and Next-Generation Lithography Mask Technology IX
Hiroichi Kawahira, Editor(s)

© SPIE. Terms of Use
Back to Top