Share Email Print
cover

Proceedings Paper

Foveal photoreceptor explanation of short-term visual acuity recovery associated with laser-induced foveal damage
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Both human laser accident cases and non-human primate behavioral studies demonstrate the possibility of full visual acuity recovery following foveal laser injury. Current explanations of such recovery require suppositions of complex retinal reorganization dynamics or neural reorganization at higher order visual brain systems. However, recent investigation based on data of retinal photoreceptor and ganglion cell topography and connectivity, suggest that the amount of static inherent plasticity, already exists at the retinal level, may also explain visual acuity recovery in the presence of laser-induced foveal damage. Modeling the off-axis visual acuity while utilizing this data, produces a more gradual fall-off in visual acuity, and supports the notion that visual acuity recovery may reside in the topographical organization of the cones. Moreover, considering the filling-in phenomena, which can conceal the presence of retinal damage from being recognized, together with eye movements, could nullify scotoma, as long as the retinal damage is not too extensive.

Paper Details

Date Published: 20 June 2003
PDF: 12 pages
Proc. SPIE 4953, Laser and Noncoherent Light Ocular Effects: Epidemiology, Prevention, and Treatment III, (20 June 2003); doi: 10.1117/12.476889
Show Author Affiliations
Amir Langus, Tel Aviv Univ. (Israel)
Harry Zwick, Walter Reed Army Institute of Research (United States)
Bruce E. Stuck, Walter Reed Army Institute of Research (United States)
Michael Belkin, Tel Aviv Univ. Goldschleger Eye Research Institute (Israel)


Published in SPIE Proceedings Vol. 4953:
Laser and Noncoherent Light Ocular Effects: Epidemiology, Prevention, and Treatment III
Bruce E. Stuck; Michael Belkin, Editor(s)

© SPIE. Terms of Use
Back to Top