Share Email Print
cover

Proceedings Paper

Enhancement of cell and tissue destruction in cryosurgery by use of eutectic freezing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An in vitro study was performed to investigate a more effective method of destroying malignant tissue during cyrosurgery, which is based on eutectic crystallization. Eutectic formation is a solidification process through which water and solutes form a hydrate and can be recognized by a secondary heat release in differential scanning calorimetry (DSC). We investigated whether it is possible to induce eutectic crystallization by infusing concentrated salt solutions into cell suspension and tissue systems. These systems included AT-1 rat prostate tumor and normal rat liver tissues. In cell suspensions, the post-thaw viability significantly drops at or below the temperatures where eutectic crystallization occurred. When eutectic crystallization is induced in tissues, histological analysis shows significantly enhanced freezing injury. These results imply that this method may be of benefit in cryosurgical applications particularly at the edge of the iceball where tumor cell survival is in question. The possible advantages of inducing eutectic crystallization are i) enhancement of direct cell injury; ii) enlargement of effective cryosurgical cell/tissue destruction zone by selecting a salt with a high eutectic temperature; and iii) improvement of the efficacy of monitoring during cryosurgery.

Paper Details

Date Published: 10 June 2003
PDF: 8 pages
Proc. SPIE 4954, Thermal Treatment of Tissue: Energy Delivery and Assessment II, (10 June 2003); doi: 10.1117/12.476533
Show Author Affiliations
Bumsoo Han, Univ. of Minnesota, Twin Cities (United States)
John C. Bischof, Univ. of Minnesota, Twin Cities (United States)


Published in SPIE Proceedings Vol. 4954:
Thermal Treatment of Tissue: Energy Delivery and Assessment II
Thomas P. Ryan, Editor(s)

© SPIE. Terms of Use
Back to Top