Share Email Print

Proceedings Paper

Diode laser vascular welding of swine aorta under scattering light monitoring
Author(s): Sayaka Ohmori; Tsunenori Arai; Masanori Fujita; Noriko Usami; Makoto Kikuchi; Tadaaki Maehara
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

To develop the catheter-based laser vascular welding device against aortic dissection, we studied fundamental characteristics of the laser vascular welding for aorta dissection model in vitro with the scattering light monitoring to obtain welding proceedings. We employed the laser vascular welding by means of the combination of the diode laser irradiation and indocyanine green (ICG) stain to the dissected vessel surface in a swine aortic dissection model to obtain localized heat generation on the surface. The forward and backward scattering lights of the diode laser from the welding portion were measured during the laser irradiation. The breaking stresses of the welded aortic pieces were measured. The breaking stress of 170gf/cm2 obtained with the 425W/cm2, 2.4s irradiation may be strong enough to the successful therapy for aortic dissection regarding to the dissecting force caused by blood flow. By analyzing forward and backward scattering lights, we could observe the occurrence of water evaporation in the welding portion, the bleaching of the ICG and the carbonization of the welding portion. Then we could monitor the proceedings of the welding process. The temperature estimation of the welding portion and the microscopic observation revealed that the mechanism of our welding may be basically elastic fiber entwining. We think our vascular welding with the scattering light monitoring of the welding process has the potential to apply catheter-based therapy for aortic dissection.

Paper Details

Date Published: 12 September 2003
PDF: 5 pages
Proc. SPIE 4949, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIII, (12 September 2003); doi: 10.1117/12.476396
Show Author Affiliations
Sayaka Ohmori, Keio Univ. (Japan)
Tsunenori Arai, Keio Univ. (Japan)
Masanori Fujita, National Defense Medical College (Japan)
Noriko Usami, Keio Univ. (Japan)
Makoto Kikuchi, National Defense Medical College (Japan)
Tadaaki Maehara, National Defense Medical College (Japan)

Published in SPIE Proceedings Vol. 4949:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIII
Eugene A. Trowers; Lawrence S. Bass; Udayan K. Shah; Reza S. Malek; David S. Robinson; Kenton W. Gregory; Lawrence S. Bass; Abraham Katzir; Nikiforos Kollias; Hans-Dieter Reidenbach; Brian Jet-Fei Wong; Timothy A. Woodward; Werner T.W. de Riese; Keith D. Paulsen, Editor(s)

© SPIE. Terms of Use
Back to Top