Share Email Print

Proceedings Paper

Connection of nanostructures using nanowires grown by a self-field-emission process
Author(s): John T. L. Thong; Chin Hin Oon; Guo Feng You; Kuan Song Yeong
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A technique for growing single metallic nanowires through a process of field-emission from a pointed structure is described. The field-emission of electrons in the presence of metal-carbonyls results in the deposition and growth of nanowires with diameters typically ranging from 3 to 30 nm, depending on the precursor used and growth conditions. Lengths range typically from several to tens of microns. Transmission electron microscope analysis of the nanowires shows that they are overcoated with a thin (~nm) layer of carbon which prevents the oxidation and corrosion of the encapsulated wire. Tungsten, iron and cobalt nanowires have been grown from their respective carbonyls. Current-voltage measurements of tungsten nanowires show ohmic behaviour at room temperature, yielding resistivity values 11-17 times that of bulk tungsten. Tungsten wires with inner core diameters of 4-5 nm are able to withstand current densities of greater than 5×1011Am-2 before failure. Free-standing nanowires thus grown from vertically-aligned nanostructures such as carbon nanotubes can be made to contact a substrate electrode by electrostatic attraction. The technique opens up the possibility of making electrical contacts to nanostructures that are otherwise not easily contactable.

Paper Details

Date Published: 13 November 2002
PDF: 9 pages
Proc. SPIE 4936, Nano- and Microtechnology: Materials, Processes, Packaging, and Systems, (13 November 2002); doi: 10.1117/12.476097
Show Author Affiliations
John T. L. Thong, National Univ. of Singapore (Singapore)
Chin Hin Oon, National Univ. of Singapore (Singapore)
Guo Feng You, National Univ. of Singapore (Singapore)
Kuan Song Yeong, National Univ. of Singapore (Singapore)

Published in SPIE Proceedings Vol. 4936:
Nano- and Microtechnology: Materials, Processes, Packaging, and Systems
Dinesh K. Sood; Ajay P. Malshe; Ryutaro Maeda, Editor(s)

© SPIE. Terms of Use
Back to Top