Share Email Print

Proceedings Paper

Just-in-time adaptive disturbance estimation for run-to-run control of photolithography overlay
Author(s): Stacy K. Firth; W. Jarrett Campbell; Thomas F. Edgar
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

One of the main challenges to implementations of traditional run-to-run control in the semiconductor industry is a high mix of products in a single factory. To address this challenge, Just-in-time Adaptive Disturbance Estimation (JADE) has been developed. JADE uses a recursive weighted least-squares parameters estimation technique to identify the contributions to variation that are dependent on product, as well as the tools on which the lot was processed. As applied to photolithography overlay, JADE assigns these sources of variation to contributions from the context items: tool, product, reference tool, and reference reticle. Simulations demonstrate that JADE effectively identifies disturbances in contributing context items when the variations are known to be additive. The superior performance of JADE over traditional EWMA is also shown in these simulations. The results of application of JADE to data from a high mix production facility show that JADE still performs better than EWMA, even with the challenges of a real manufacturing environment.

Paper Details

Date Published: 12 July 2002
PDF: 8 pages
Proc. SPIE 4692, Design, Process Integration, and Characterization for Microelectronics, (12 July 2002); doi: 10.1117/12.475651
Show Author Affiliations
Stacy K. Firth, Yield Dynamics, Inc. and Univ. of Texas at Austin (United States)
W. Jarrett Campbell, Yield Dynamics, Inc. (United States)
Thomas F. Edgar, Univ. of Texas at Austin (United States)

Published in SPIE Proceedings Vol. 4692:
Design, Process Integration, and Characterization for Microelectronics
Alexander Starikov; Alexander Starikov; Kenneth W. Tobin, Editor(s)

© SPIE. Terms of Use
Back to Top