Share Email Print

Proceedings Paper

Modeling of electronic charge transport in smectic liquid crystals
Author(s): Akira Ohno; Kensuke Kurotaki; Akihide Haruyama; Masahiro Funahashi; Jun-ichi Hanna
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have investigated the hole transport in smectic mesophases by Monte Carlo simulation based on a 2D hopping transport in Gaussian-distributed density of states and time-of-flight experiments. We found that their unique carrier transport properties such as non-Poole-Frenkel type of behavior i.e., field-and-temperature independent mobility, is well explained by the 2D disorder model with a small Gaussian width of 50-60 meV. Furthermore, we found the Pool-Frenkel type of behavior in a biphenyl derivatives and at a low temperaure range below ambient temperature in a therthiphene derviative and determined the Gaussian width to be 100-120meV and 50 meV, respectively. We came to a conclusion that the charge carrier transport in smectic mesophases can be explained by a 2D disorder model with a small Gaussian width of the density of states σ, where a value of σ/kT plays important role to determien its behavior at a given temperature.

Paper Details

Date Published: 14 July 2003
PDF: 8 pages
Proc. SPIE 4991, Organic Photonic Materials and Devices V, (14 July 2003); doi: 10.1117/12.475447
Show Author Affiliations
Akira Ohno, Tokyo Institute of Technology (Japan)
Kensuke Kurotaki, Tokyo Institute of Technology (Japan)
Akihide Haruyama, Tokyo Institute of Technology (Japan)
Masahiro Funahashi, Tokyo Institute of Technology (Japan)
Jun-ichi Hanna, Tokyo Institute of Technology (Japan)

Published in SPIE Proceedings Vol. 4991:
Organic Photonic Materials and Devices V
James G. Grote; Toshikuni Kaino, Editor(s)

© SPIE. Terms of Use
Back to Top