Share Email Print
cover

Proceedings Paper

Blocking of multirate circuits in multichannel optical networks
Author(s): Venkatraman Tamilraj; Suresh Subramaniam
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We consider optical networks with nodes interconnected by links comprising multiple channels. The blocking performance of such networks depends on the channel-switching capabilities of the nodes. In this paper, we focus on developing analytical models for evaluating the blocking performance in circuit-switched optical networks. Several architectures for channel-switching are presented. Multi-rate circuits may be established if different circuits are allocated different number of channels. Depending on how the network can assign the channels to circuits that request more than one channel, it is classified as a Data Splitting Network (DSN) or a non-DSN. We consider multi-rate circuits which require either a single channel or a given number of channels k (>1). Analytical models for computing blocking probabilities are developed for various channel-switching architectures at the nodes. The validity of the models is shown by comparing the analytical results with simulations. Numerical results in a single-fiber TDM wavelength-routing network suggest that limited channel-switching may be sufficient even for circuits that require more than one channel or slot. A comparison of DSN and non-DSN shows that data splitting can accommodate more multi-slot circuits at the expense of blocking more single-slot circuits.

Paper Details

Date Published: 3 July 2002
PDF: 12 pages
Proc. SPIE 4874, OptiComm 2002: Optical Networking and Communications, (3 July 2002); doi: 10.1117/12.475313
Show Author Affiliations
Venkatraman Tamilraj, The George Washington Univ. (United States)
Suresh Subramaniam, The George Washington Univ. (United States)


Published in SPIE Proceedings Vol. 4874:
OptiComm 2002: Optical Networking and Communications
Nasir Ghani; Krishna M. Sivalingam, Editor(s)

© SPIE. Terms of Use
Back to Top