Share Email Print

Proceedings Paper

Application of the genetic optimizaton method to the design of ultrasonic motors
Author(s): Philippe Bouchilloux; Kenji Uchino
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ultrasonic motors often use a combination of structural modes to generate the desired elliptical vibration field that ultimately results in the linear or rotary motion of an object. Designing an ultrasonic device that combines structural modes of vibration represents a non-trivial exercise, especially when it is desired to maximize the electromechanical coupling coefficient of the piezoelectric elements, the amplitude of vibration, and the force factor of the device. Other parameters may also be combined and render the exercise even more difficult: targeting a specific frequency, constraining dimensions, electrical constraints, etc. To help designing such ultrasonic structures, we propose to use the genetic optimization method in combination to the finite element method. Although evolutionary methods are not new and have been successfully applied to a variety of problems (including smart devices), they have never been applied, to the best of our knowledge, to the design of ultrasonic motors. In this paper, we review the general aspects of the method utilized, and provide several examples, including experimental verification.

Paper Details

Date Published: 10 July 2002
PDF: 9 pages
Proc. SPIE 4693, Smart Structures and Materials 2002: Modeling, Signal Processing, and Control, (10 July 2002); doi: 10.1117/12.475250
Show Author Affiliations
Philippe Bouchilloux, Rensselaer Polytechnic Institute (United States)
Kenji Uchino, The Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 4693:
Smart Structures and Materials 2002: Modeling, Signal Processing, and Control
Vittal S. Rao, Editor(s)

© SPIE. Terms of Use
Back to Top