Share Email Print

Proceedings Paper

Comparison of actuator designs for active vibration control of a gear pair system
Author(s): Yuanhong Guan; Mingfeng Li; Teik C. Lim; W. Steve Shepard
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Four actuation concepts for the active suppression of gearbox housing mesh frequency vibrations caused by transmission error excitation from the gear pair system are modeled and compared by computing the required actuation force and amplifier power spectra. The proposed designs studied consist of (i) active inertial actuators positioned tangentially on the gear body to produce a pair of reactive force and moment, (ii) semi-active gear-shaft torsional coupling to provide tuned vibration isolation and suppression, (iii) active bearing vibration control to reduce vibration transmissibility, and (iv) active shaft transverse vibration control to suppress/tune gearbox casing or shaft response. Numerical simulations that incorporate a transmission error term as the primary excitation are performed using a finite element model of the geared rotor system (dynamic plant) constructed from beam and lumped mass/stiffness elements. Several key comparison criteria, including the required actuation effort, control robustness and implementation cost, are examined, and the advantages and disadvantages of each concept are discussed. Based on the simulated data, the active shaft transverse vibration scheme is identified as the most suitable approach for this application.

Paper Details

Date Published: 10 July 2002
PDF: 12 pages
Proc. SPIE 4693, Smart Structures and Materials 2002: Modeling, Signal Processing, and Control, (10 July 2002); doi: 10.1117/12.475234
Show Author Affiliations
Yuanhong Guan, Univ. of Alabama (United States)
Mingfeng Li, Univ. of Alabama (United States)
Teik C. Lim, Univ. of Alabama (United States)
W. Steve Shepard, Univ. of Alabama (United States)

Published in SPIE Proceedings Vol. 4693:
Smart Structures and Materials 2002: Modeling, Signal Processing, and Control
Vittal S. Rao, Editor(s)

© SPIE. Terms of Use
Back to Top