Share Email Print
cover

Proceedings Paper

Characterizing electroactive polymers for use in robotic surgical instruments
Author(s): Alan J. Snyder; Adam L. Cohen; Zhong-Yang Cheng; Qi Ming Zhang; James P. Runt
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The popularity of minimally invasive surgical procedures over traditional open procedures motivates us to develop new instruments that address the limits of existing technology and enable more widespread use of minimally invasive approaches. Robotic surgical instruments have the potential to provide improved dexterity and range of motion within the confines of the human body when compared with manually actuated instruments. The high strain response and elastic energy density of electron-irradiated P(VDF-TrFE) make it a candidate actuator material for robotic instruments that provide electronic mediation and multiple degrees of freedom of tip movement. We are currently studying both active and passive properties of P(VDF-TrFE) with the goal of constructing a mathematical model of the material's behavior. Studies have been conducted on 15 micron thick film samples in rolled and rolled-flattened configurations. Passive properties can be represented by a 5 parameter viscoelastic model with two time constants on the order of ten and 200 seconds. Active responses were found to have strong dependence upon field and modest dependence upon load. We suggest means by which the active and passive responses can be combined in a model of steady-state response that would be of value in positioning tasks. The time course of the active response appears to contain components on two time scales, but further studies are required to characterized it in more detail.

Paper Details

Date Published: 11 July 2002
PDF: 9 pages
Proc. SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), (11 July 2002); doi: 10.1117/12.475185
Show Author Affiliations
Alan J. Snyder, The Pennsylvania State Univ. (United States)
Adam L. Cohen, The Pennsylvania State Univ. (United States)
Zhong-Yang Cheng, The Pennsylvania State Univ. (United States)
Qi Ming Zhang, The Pennsylvania State Univ. (United States)
James P. Runt, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 4695:
Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top