Share Email Print
cover

Proceedings Paper

Electroviscoelastic materials as active dampers
Author(s): Janet M. Biggerstaff; John B. Kosmatka
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Electroviscoelastic materials (EVEMs) are polymeric materials that exhibit changes in structural properties when a voltage is applied across it. In the current study, an EVEM is developed that produce large changes in stiffness and damping materials with applied voltage. The resulting material exhibits many of the same properties as an electrorheological (ER) material, except the current material is self-supporting and thus can be used to applications where viscoelastic materials are used. The EVEM is composed of three components: 20% (by mass) of poly (p-phenylene) (PPP) particles doped with CuCl2 or FeCl3, 64% of Dow Sylgard 527 silicone gel, and 16% Dow Corning Sylgard 182 silicone elastomer, where the elastomer is added to for stiffening. Experimental harmonic tests using a double-lap shear test and a 0.025 thick specimens between 1 and 150 Hz reveal a factor six increase in stiffening and a factor of three decrease in damping with applied voltage (1500v).

Paper Details

Date Published: 11 July 2002
PDF: 6 pages
Proc. SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), (11 July 2002); doi: 10.1117/12.475182
Show Author Affiliations
Janet M. Biggerstaff, Univ. of California/San Diego (United States)
John B. Kosmatka, Univ. of California/San Diego (United States)


Published in SPIE Proceedings Vol. 4695:
Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top