Share Email Print
cover

Proceedings Paper

Performance evaluation of bending actuators made from electrostrictive graft elastomers
Author(s): Ji Su; Robert C Costen; Joycelyn S. Harrison; Kenneth M. Newbury; Donald J. Leo
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Recently a new class of electrostrictive polymers, called electrostrictive graft elastomers, was developed at NASA Langley Research Center. In this work, the output force of a bending actuator made from electrostrictive graft elastomer was measured and modeled to understand the dependence of performance on device configuration. This understanding should lead to better actuator design and fabrication. The prototype bending actuator is 47micrometers thick and 8 mm wide. The output bending force at the tip was measured as a function of applied voltage and the distance from the tip to the holding stage. The output force at 2.1 kV increases from 124(mu) N at a length of 33.5 mm to 662(mu) N at 7 mm. Accourding to a small displacement, 5-layer, a strength-of- materials model, the output bending force of the actuator varies inversely with its length and directly with the square of the applied voltage. Consequently, the output bending force can be about 5 mN when the length of the actuator is reduced to 1 mm for application to micro- electromechanical (MEMS) devices. The experimental results will be presented and a method for enhancing the performance will also be discussed.

Paper Details

Date Published: 11 July 2002
PDF: 7 pages
Proc. SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), (11 July 2002); doi: 10.1117/12.475154
Show Author Affiliations
Ji Su, NASA Langley Research Ctr. (United States)
Robert C Costen, NASA Langley Research Ctr. (United States)
Joycelyn S. Harrison, NASA Langley Research Ctr. (United States)
Kenneth M. Newbury, Virginia Polytechnic Institute and State Univ. (United States)
Donald J. Leo, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 4695:
Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top