Share Email Print
cover

Proceedings Paper

Wireless health monitoring of cracks in structures with MEMS-IDT sensors
Author(s): Jae-Sung Kim; K. J. Vinoy; Vijay K. Varadan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.

Paper Details

Date Published: 11 July 2002
PDF: 12 pages
Proc. SPIE 4700, Smart Structures and Materials 2002: Smart Electronics, MEMS, and Nanotechnology, (11 July 2002); doi: 10.1117/12.475048
Show Author Affiliations
Jae-Sung Kim, The Pennsylvania State Univ. (United States)
K. J. Vinoy, The Pennsylvania State Univ. (United States)
Vijay K. Varadan, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 4700:
Smart Structures and Materials 2002: Smart Electronics, MEMS, and Nanotechnology
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top