Share Email Print
cover

Proceedings Paper

MEMS-based sensor arrays for military applications
Author(s): Paul B. Ruffin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Scientists and engineers at the Army Aviation Missile Command's (AMCOM) Research, Development and Engineering Center (RDEC) are cooperatively working with the Defense Advanced Research Projects Agency (DARPA), other Army agencies, and industry to provide technical solutions for the Army's transformation efforts into the 21st Century force. Advanced technologies are being exposed to achieve the performance and cost goals dictated by the emerging missions of the Transformed Army. It is well established that MEMS technology offers the potential solution to cost, size, and weight issues for the soldier, missile, gun, ground vehicles, and aircraft applications. MEMS sensor arrays are currently being investigated to meet system performance requirements and provide more robust mission capability. A Science and Technology Objective, Research and Development Project is underway at AMCOM/RDEC to develop controlled MEMS sensor arrays to provide for full military dynamic performance ranges using miniature sensor system. MEMS-based angular rate sensors are enhanced with vibration feedback form MEMS accelerometers for output signal stabilization in high-vibration environments. Multi-range MEMS-based accelerometers, cooperatively developed by Government and industry, are being multiplexed to provide dynamic range expansion. An array of integrated accelerometers is expected to increase the dynamic range by an order of magnitude. Future projections suggest that MEMS sensor array technology will be applicable to a broad range of military applications, which include environmental sensor suites for structural health monitoring and forward reconnaissance and surveillance; and optical and radio frequency phased arrays for fast beam steering.

Paper Details

Date Published: 11 July 2002
PDF: 11 pages
Proc. SPIE 4700, Smart Structures and Materials 2002: Smart Electronics, MEMS, and Nanotechnology, (11 July 2002); doi: 10.1117/12.475022
Show Author Affiliations
Paul B. Ruffin, U.S. Army Aviation and Missile Command (United States)


Published in SPIE Proceedings Vol. 4700:
Smart Structures and Materials 2002: Smart Electronics, MEMS, and Nanotechnology
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top