Share Email Print
cover

Proceedings Paper

Modeling soft factors in computer-based wargames
Author(s): Steven M. Alexander; David O. Ross; Jonathan S. Vinarskai; Steven D. Farr
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Computer-based wargames have seen much improvement in recent years due to rapid increases in computing power. Because these games have been developed for the entertainment industry, most of these advances have centered on the graphics, sound, and user interfaces integrated into these wargames with less attention paid to the game's fidelity. However, for a wargame to be useful to the military, it must closely approximate as many of the elements of war as possible. Among the elements that are typically not modeled or are poorly modeled in nearly all military computer-based wargames are systematic effects, command and control, intelligence, morale, training, and other human and political factors. These aspects of war, with the possible exception of systematic effects, are individually modeled quite well in many board-based commercial wargames. The work described in this paper focuses on incorporating these elements from the board-based games into a computer-based wargame. This paper will also address the modeling and simulation of the systemic paralysis of an adversary that is implied by the concept of Effects Based Operations (EBO). Combining the fidelity of current commercial board wargames with the speed, ease of use, and advanced visualization of the computer can significantly improve the effectiveness of military decision making and education. Once in place, the process of converting board wargames concepts to computer wargames will allow the infusion of soft factors into military training and planning.

Paper Details

Date Published: 15 July 2002
PDF: 5 pages
Proc. SPIE 4716, Enabling Technologies for Simulation Science VI, (15 July 2002); doi: 10.1117/12.474903
Show Author Affiliations
Steven M. Alexander, Air Force Research Lab. (United States)
David O. Ross, Air Force Research Lab. (United States)
Jonathan S. Vinarskai, Air Force Research Lab. (United States)
Steven D. Farr, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 4716:
Enabling Technologies for Simulation Science VI
Alex F. Sisti; Dawn A. Trevisani, Editor(s)

© SPIE. Terms of Use
Back to Top