Share Email Print
cover

Proceedings Paper

Adaptive estimation of angular velocity and acceleration of a single-axis MEMS coriolis sensor
Author(s): Jay Karmarkar; Sahjendra N. Singh
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

MEMS fabrication technology has facilitated the implementation of a broad variety of low-cost miniature sensors, including those for measuring linear and angular rates of objects-of-interest. Earlier work has focused on component-level sensor fabrication issues and proof-of- concept verification of their sensing ability. This prior work has provided the foundation for design and performance assessment of the next generation of multi-axis embedded MEMS sensors at a subsystem level. Subsequently, this will lead to the fabrication of an integrated self-calibrating 6 degree-of-freedom (DOF) strapdown intertial sensor assembled in a low-cost miniature package. This in turn will lead to a variety of applications that are currently unrealistic because of cost-weight-power considerations. This particular effort is directed toward establishing the feasibility of extracting additional information from a MEMS sensor by appropriately exciting a single-axis Coriolis sensor, for example, to generate optimum angular velocity and angular acceleration estimates, whereas prior studies have shown only the ability to generate approximate angular acceleration estimates, whereas prior studies have shown only the ability to generate approximate angular rotational velocity measurements. This work entailed the dynamic modeling of a representative MEMS sensor and several different angular velocity and angular acceleration driving functions in a MATLAB-based simulation. The corresponding raw sensor outputs were then optimally processed to concurrently generate estimates of both angular velocity and angular acceleration. The graphical results form these simulation studies are included to show the benefit of physically co-locating a digital computing element with the MEMS sensor, thereby facilitating the creation of a new generation of digital smart sensors, that will be capable of self-calibration based performance deterioration assessment, fault detection and recovery.

Paper Details

Date Published: 15 July 2002
PDF: 9 pages
Proc. SPIE 4701, Smart Structures and Materials 2002: Smart Structures and Integrated Systems, (15 July 2002); doi: 10.1117/12.474674
Show Author Affiliations
Jay Karmarkar, Innovative Configuration, Inc. (United States)
Sahjendra N. Singh, Univ. of Nevada Las Vegas (United States)


Published in SPIE Proceedings Vol. 4701:
Smart Structures and Materials 2002: Smart Structures and Integrated Systems
L. Porter Davis, Editor(s)

© SPIE. Terms of Use
Back to Top