Share Email Print
cover

Proceedings Paper

Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials
Author(s): Seth S. Kessler; S. Mark Spearing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.

Paper Details

Date Published: 15 July 2002
PDF: 11 pages
Proc. SPIE 4701, Smart Structures and Materials 2002: Smart Structures and Integrated Systems, (15 July 2002); doi: 10.1117/12.474649
Show Author Affiliations
Seth S. Kessler, Massachusetts Institute of Technology (United States)
S. Mark Spearing, Massachusetts Institute of Technology (United States)


Published in SPIE Proceedings Vol. 4701:
Smart Structures and Materials 2002: Smart Structures and Integrated Systems
L. Porter Davis, Editor(s)

© SPIE. Terms of Use
Back to Top