Share Email Print
cover

Proceedings Paper

Sub-70-nm pattern fabrication using an alternating phase-shifting mask in 157-nm lithography
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In Selete, we have developed various resolution-enhancement technologies (RETs) such as the alternating phase shifting mask (alt-PSM), attenuated-PSM (att-PSM), and off-axis illumination (OAI). The alt-PSM, for example, reduces the k1 factor and extends the lithographic performance. A problem concerning the alt-PSM is the difference in the transmitted light intensities of the non-phase-shifting region and the phase-shifting region which can cause critical-dimension (CD) placement error. The transmitted light intensities of the two regions can be made equal by side-etching, in which the quartz (Qz) is undercut by wet-etching at the side of the transmitting region. We sought to optimize the mask structure in terms of a high numerical aperture (NA) through a simulation using two kinds of structures with a 157 nm exposure wavelength. The structures were a single-trench structure and a dual-trench structure, with each trench dug in the transmitting region. To attain a high NA (NA equals 0.85), we tried to optimize the parameters of the Cr film thickness, the amount of the undercut (side-etching), and the phase shift. The evaluated line pattern sizes were 70 nm (line/space size equals 70/70 nm, 70/140 nm, 70/210 nm, and 70/350 nm) and 50 nm (line/space size equals 50/50 nm, 50/100 nm, 50/150 nm, and 50/250 nm) at the wafer. Further, using the optimized mask, we calculated the lithographic margin of a sub 70 nm pattern through a simulation. For the 70 nm line patterns, we found that it will be difficult to fabricate precisely a 70 nm line patten using a mask with a single- trench structure. And we also found that the most suitable conditions for the dual-trench structure mask were a 90 nm undercut, a 100 nm Cr film thickness, and a 180 degree(s) phase shift. The exposure latitude at a depth of focus (DOF) of 0.3 micrometers , simulated using the optimized mask, was 5.3% for the 70/70 nm pattern, 3.6% for 70/140 nm 16.0% for 70/210 nm, and 29.3% for 70/350 nm. As the pitch widened, the exposure latitude increased for the 70 nm line patterns. Using the optimized dual-trench mask for 157 nm lithography, it will be able to keep the EL more than 3% at DOF of 0.3 micrometers for a 70 nm line pattern.

Paper Details

Date Published: 30 July 2002
PDF: 11 pages
Proc. SPIE 4691, Optical Microlithography XV, (30 July 2002); doi: 10.1117/12.474553
Show Author Affiliations
Shigeo Irie, Semiconductor Leading Edge Technologies, Inc. (Japan)
Noriyoshi Kanda, Semiconductor Leading Edge Technologies, Inc. (Japan)
Kunio Watanabe, Semiconductor Leading Edge Technologies, Inc. (Japan)
Toshifumi Suganaga, Semiconductor Leading Edge Technologies, Inc. (Japan)
Toshiro Itani, Semiconductor Leading Edge Technologies, Inc. (Japan)


Published in SPIE Proceedings Vol. 4691:
Optical Microlithography XV
Anthony Yen, Editor(s)

© SPIE. Terms of Use
Back to Top