Share Email Print
cover

Proceedings Paper

Defect printability and specification of ArF mask in repeating feature
Author(s): Wan-Ho Kim; Won-Kwang Ma; Hee-Bom Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

As ArF process will be substituted for KrF process at below 0.13 um node, it is time to study CD budget of mask error in ArF lithography. The purpose of this study is to investigate printability of ArF mask defects and corresponding effective specification in repeating cell. Mask defects in regularly repeated pattern were classified as point defect, line defect, and are defect, for convenience's sake, according to their sizes and lithographic explanations. Based on such classification, test reticle (ArF attenuated PSM) was manufactured in our captive mask shop. After exposed at a nominal dose and e-beam cured, each defects was inspected to extract effective specification for ArF process. MNPD (maximum non-printable defect) sizes of various duty patterns were manifested in point defect. In line defect and area defect, as the base pattern CD and duty ratio changed, the slope (MEF) of linear fitting was obtained. Maximum CD deviation from mean CD could be calculated from it. Mask CD budget was considered as 50% of total wafer CD error (10% of target) for mask spec generation. Experimental result was compared with DAIM (diffused aerial image model)-based simulation result because experiment had the error that arose from e-beam curing.

Paper Details

Date Published: 30 July 2002
PDF: 9 pages
Proc. SPIE 4691, Optical Microlithography XV, (30 July 2002); doi: 10.1117/12.474518
Show Author Affiliations
Wan-Ho Kim, Hynix Semiconductor, Inc. (South Korea)
Won-Kwang Ma, Hynix Semiconductor, Inc. (South Korea)
Hee-Bom Kim, Hynix Semiconductor, Inc. (South Korea)


Published in SPIE Proceedings Vol. 4691:
Optical Microlithography XV
Anthony Yen, Editor(s)

© SPIE. Terms of Use
Back to Top