Share Email Print
cover

Proceedings Paper

Theoretical analysis of the potential for maskless lithography
Author(s): Chris A. Mack
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In order to be practical, maskless lithography schemes are limited as to how small the physical address grid can be. Thus, graybeam techniques are used to create a small virtual address grid while maintaining a large physical address grid. One important consideration for maskless lithography is the impact of these small 'virtual' address grids on image quality. Using simple simulations of aerial image formation as the summation of Gaussian spots and PROLITH simulations of the projection of square pixels, several important conclusions about the use of graybeam are made. Graybeam results in a non-linear variation in edge position with gray level, with the non-linearity increasing with larger physical address grid size. While this edge position deviation from non-linearity can be calibrated out of the writing scheme, the calibration curve is process dependent. One problem with the use of graybeam is the reduction of image quality as expressed by the image log-slope. For the raster scan case of a physical address grid equal to half of the spot size, the worst case graybeam level has an image log-slope at the edge that is 20% less than the best case. For the projection imaging case of a physical address grid equal to the pixel size, the worst case graybeam level has an image log-slope at the edge that is 15% less than the best case.

Paper Details

Date Published: 30 July 2002
PDF: 9 pages
Proc. SPIE 4691, Optical Microlithography XV, (30 July 2002); doi: 10.1117/12.474474
Show Author Affiliations
Chris A. Mack, KLA-Tencor Corp. (United States)


Published in SPIE Proceedings Vol. 4691:
Optical Microlithography XV
Anthony Yen, Editor(s)

© SPIE. Terms of Use
Back to Top